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NAILING DOWN A VIBRATING MEMBRANE
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In a previous letter [1], the exact solution of a vibrating annular membrane is considered.
The asymptotic form for the fundamental frequency k can be shown to be
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where the outer radius is one, c is the core radius, and k
0
is the fundamental frequency of the

unit circle without the constraint. When cP0 or when the inner core shrinks to zero (a
centered pin-point constraint), the frequency is the same as that of a circular membrane
without the constraint. Laura et al. [2, 3] showed that the higher frequencies of a circular
membrane are also una!ected by a centered pin-point constraint. The problem was further
discussed by Gottlieb [4], who noted that Rayleigh [5] had conjectured that this
phenomena would apply to any number of pin-points on a membrane of any shape.

The second term of equation (1) is the "rst correction due to the small, "nite size of the
point constraint. Since (dk/dc)PR as cP0, the rise of frequency is singular as c is
increased from zero. From reference [1] one can show that the increase from the
unconstrained case is about 5% when c is 10~6 and 10% when c is 10~3. Since no real
constraint can have in"nitesimal size, this correction term is important.

The purpose of this letter is to "nd the size correction term in the case of an arbitrary
vibration mode of an arbitrary membrane with an arbitrary number, locations, and (small)
sizes of internal point constraints. The method used is similar to that of Rayleigh [5], and
may be well known to some researchers.

Consider a membrane of arbitrary shape with N small internal circular constraints with
radius c

i
;1 centered at P

i
. Let w

0
and k

0
solve the membrane problem without the

constraints, and w and k solve the problem the constraints. Thus
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Multiply equation (2) by w and equation (3) by w
0
. The di!erence is then integrated over the

multiply-connected area of the membrane:
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Using Green's second theorem and noting that w
0

is zero on the outer boundary, w is zero
both on the outer boundary and the internal constraints, equation (4) gives
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where s
i
is the boundary of the ith constraint and n is the outward normal of the domain.

Let (o
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, /
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) be polar co-ordinates centered at P
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. Then, on each constraint ds
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is small, w approximately satis"es the Laplace equation.

The non-periodic solution is
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where the constants are adjusted such that w is zero on o
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The derivative on the boundary is thus
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Equation (5) then gives
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where w+w
0

in the area integral. The corresponding eigenfunction is
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For the fundamental mode of a circular boundary, w
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r) and equation (8) simpli"es

to
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For a single constraint at the center, r
i
"0, c

i
"c and equation (10) becomes
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which is identical to equation (1) after using the Wronskin identity
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We shall give some examples. Consider a square membrane of side length one and nailed at

the center. For the fundamental mode k
0
"J2n and w

0
"sin(nx) sin(ny). From equation

(8), the frequency with the constraint is
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where c@1 is the radius of the constraint. Consider next a circular membrane nailed at
seven evenly points: r
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"c for i"2}7, Then for the

fundamental mode equation (10) gives
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Now for the second mode k
0
"3)8317 and w

0
"sin hJ

1
(k

0
r). Equation (8) gives
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For both modes, the phase angle a does not enter the frequency correction.
Finally, guided by comparisons with the exact solution in reference [1], the constraint

radius c should be less than about 0)001 for equation (8) to have an error or less than 1%.
Also, the constraint locations should be more than O(c) distance from the membrane
boundary and from each other.
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